Current Issue : October-December Volume : 2023 Issue Number : 4 Articles : 5 Articles
Objectives: Use of an AI system based on deep learning to investigate whether the system can aid in distinguishing malignant from benign calcifications on spot magnification mammograms, thus potentially reducing unnecessary biopsies. Methods: In this retrospective study, we included public and in-house datasets with annotations for the calcifications on both craniocaudal and mediolateral oblique vies, or both craniocaudal and mediolateral views of each case of mammograms. All the lesions had pathological results for correlation. Our system comprised an algorithm based on You Only Look Once (YOLO) named adaptive multiscale decision fusion module. The algorithm was pre-trained on a public dataset, Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM), then re-trained and tested on the in-house dataset of spot magnification mammograms. The performance of the system was investigated by receiver operating characteristic (ROC) analysis. Results: We included 1872 images from 753 calcification cases (414 benign and 339 malignant) from CBIS-DDSM. From the in-house dataset, 636 cases (432 benign and 204 malignant) with 1269 spot magnification mammograms were included, with all lesions being recommended for biopsy by radiologists. The area under the ROC curve for our system on the in-house testing dataset was 0.888 (95% CI 0.868–0.908), with a sensitivity of 88.4% (95% CI 86.9–8.99%), specificity of 80.8% (95% CI 77.6–84%), and an accuracy of 84.6% (95% CI 81.8–87.4%) at the optimal cutoff value. Using the system with two views of spot magnification mammograms, 80.8% benign biopsies could be avoided. Conclusion: The AI system showed good accuracy for classification of calcifications on spot magnification mammograms which were all categorized as suspicious by radiologists, thereby potentially reducing unnecessary biopsies....
Optical Coherence Tomograph (OCT) imaging technology can be used to examine, in vivo, the human ET. At present, it is impossible to achieve the OCT scanning vivo and ex vivo in the same individual human body, or study the consistency between OCT images and histological images of the eustachian tube nasopharyngeal region and adjacent structures. The aim of this study was to determine the consistency between OCT images and histological sections in vivo and ex vivo in miniature pigs. Methods: OCT imaging was performed on five adult miniature pigs in vivo and ex vivo. The images of the eustachian tube OCT (ET-OCT), nasopharynx OCT (NP-OCT) and histological cross sections were further studied. Results: All five miniature pigs achieved the OCT scan successfully, acquiring ET-OCT and NP-OCT images in vivo and ex vivo on both sides. The acquired ET OCT images closely matched the histological images, revealing details of the cartilage, submucosa, glands, and mucosa. The lower segment of the ET wall mucosa had an abundance of glands and submucosal tissues, with more low-signal areas appearing in the ex vivo images. The NP-OCT images of the nasopharynx matched the details of the mucosa and submucosal tissues. The ex-vivo OCT images showed thicker mucosa and more scattered slightly lower signal areas compared to the vivo OCT images. Conclusions: ET-OCT images and NP-OCT images matched the histological structure of eustachian tube nasopharyngeal region structures in miniature pigs both in vivo and ex vivo. OCT images may be sensitive to changes in edema and ischemia status. There is a great potential for morphological assessment of inflammation, edema, injure, mucus gland status....
Background Microelectrical Impedance Spectroscopy (μEIS) is a tiny device that utilizes fluid as a working medium in combination with biological cells to extract various electrical parameters. Dielectric parameters of biological cells are essential parameters that can be extracted using μEIS. μEIS has many advantages, such as portability, disposable sensors, and high-precision results. Results The paper compares different configurations of interdigitated microelectrodes with and without a passivation layer on the cell contact tracks. The influence of the number of electrodes on the enhancement of the extracted impedance for different types of cells was provided and discussed. Different types of cells are experimentally tested, such as viable and non-viable MCF7, along with different buffer solutions. This study confirms the importance of μEIS for in vivo and in vitro applications. An essential application of μEIS is to differentiate between the cells’ sizes based on the measured capacitance, which is indirectly related to the cells’ size. The extracted statistical values reveal the capability and sensitivity of the system to distinguish between two clusters of cells based on viability and size. Conclusion A completely portable and easy-to-use system, including different sensor configurations, was designed, fabricated, and experimentally tested. The system was used to extract the dielectric parameters of the Microbeads and MCF7 cells immersed in different buffer solutions. The high sensitivity of the readout circuit, which enables it to extract the difference between the viable and non-viable cells, was provided and discussed. The proposed system can extract and differentiate between different types of cells based on cells’ sizes; two other polystyrene microbeads with different sizes are tested. Contamination that may happen was avoided using a Microfluidic chamber. The study shows a good match between the experiment and simulation results. The study also shows the optimum number of interdigitated electrodes that can be used to extract the variation in the dielectric parameters of the cells without leakage current or parasitic capacitance....
Background: Unilateral diaphragmatic paralysis in patients with univentricular heart is a known complication after pediatric cardiac surgery. Because diaphragmatic excursion has a significant influence on perfusion of the pulmonary arteries and hemodynamics in these patients, unilateral loss of function leads to multiple complications. The current treatment of choice, diaphragmatic plication, does not lead to a full return of function. A unilateral diaphragmatic pacemaker has shown potential as a new treatment option. In this study, we investigated an accelerometer as a trigger for a unilateral diaphragm pacemaker (closed-loop system). Methods: Seven pigs (mean weight 20.7 ± 2.25 kg) each were implanted with a customized accelerometer on the right diaphragmatic dome. Accelerometer recordings (mV) of the diaphragmatic excursion of the right diaphragm were compared with findings using established methods (fluoroscopy [mm]; ultrasound, M-mode [cm]). For detection of the amplitude of diaphragmatic excursions, the diaphragm was stimulated with increasing amperage by a cuff electrode implanted around the right phrenic nerve. Results: Results with the different techniques for measuring diaphragmatic excursions showed correlations between accelerometer and fluoroscopy values (correlation coefficient 0.800, P < 0.001), accelerometer and ultrasound values (0.883, P < 0.001), and fluoroscopy and ultrasound values (0.816, P < 0.001). Conclusion: The accelerometer is a valid method for detecting diaphragmatic excursion and can be used as a trigger for a unilateral diaphragmatic pacemaker....
Although minimally invasive surgeries have gained popularity in many orthopaedic fields, minimally invasive approaches for diaphyseal clavicular fracture have not been widely performed, which is attributed to difficulties in performing a closed reduction of fracture deformities of a curved bone in a three-dimensional space. The goal of this study was to investigate the radiographic parameters of fracture deformities in a three-dimensional space and to identify the risk factors for deformities. Methods: The computed tomography images of 100 patients who sustained a clavicle fracture were included. Five parameters were used to analyze the deformities: change in clavicle length, fracture displacement, and fragment rotation around the X, Y, Z axes. The change in length was assessed using the length of the endpoint line. The displacement was assessed using the distance between the fracture midpoints. The rotation deformities were assessed using the Euler angles. The correlation between the parameters was evaluated with the Pearson correlation coefficient. The risk factors were evaluated using univariable analysis and multiple regression analysis. Results: The average change in length was − 5.3 ± 8.3 mm. The displacement was 11.8 ± 7.1 mm. The Euler angles in the Z-Y-X sequences were -1 ± 8, 1 ± 8, and − 8 ± 13 degrees. The correlation coefficient between the change in length and the displacement was − 0.724 (p < 0.001). The variables found to increase the risk of shortening and displacement were right-sided fracture (p = 0.037), male sex (p = 0.015), and multifragmentary type (p = 0.020). The variables found to increase the risk of rotation deformity were the number of rib fractures (p = 0.001) and scapula fracture (p = 0.025). Conclusions: There was a strong correlation between shortening and displacement. The magnitude of anterorotation around the X axis was greater than the magnitude of retraction around the Z axis and depression around the Y axis. The risk factors for shortening and displacement included right-sided fracture, male sex, and multifragmentary type. The risk factor for retraction around the Z axis was the number of rib fractures, and the risk factor for depression around the Y axis was scapula fracture. These results could be useful adjuncts in guiding minimally invasive surgical planning for diaphyseal clavicular fractures....
Loading....